

July 15, 2020

Mr. Anthony Star Director Illinois Power Agency 160 North LaSalle Street, Suite C-504 Chicago, Illinois 60601

Dear Mr. Star:

MidAmerican is submitting its final hourly load and generation data for the July 15, 2020 deadline for submission to the Illinois Commerce. Please review the data and let me know if there are any questions or concerns with this information.

The following information is being supplied with this filing.

- 1. Forecast Documentation_IL_07152020.pdf This file contains a discussion of load forecast methodology.
- 2. IL_Base_Fcst_EST_07152020.xlsx This file contains base scenario MidAmerican Illinois hourly load forecast from June 1, 2020 through May 31, 2027.
- 3. IL_Base_Retail_Sales_Forecast_07152020.xlsx This file contains MidAmerican Illinois hourly retail sales load forecast from January 1, 2020 through December 31, 2032.
- 4. IL_High_Fcst_EST_07152020.xlsx This file contains high scenario MidAmerican Illinois hourly load forecast from June 1, 2020 through May 31, 2027.
- 5. IL_Low_Fcst_EST_07152020.xlsx This file contains low scenario MidAmerican Illinois hourly load forecast from June 1, 2020 through May 31, 2027.
- 6. IL_NCP_Forecast_07152020.xlsx This file contains the noncoincident peak demand forecast.
- 7. MWh_Sales_and_NCP_MW_High_Scenario.xlsx This file contains the MWh sales forecast and the non-coincident peak demand forecast supporting the high hourly forecast scenario.
- 8. MWH_Sales_and_NCP_MW_Low_Scenario.xlsx This file contains the MWh sales forecast and the non-coincident peak demand forecast supporting the low hourly forecast scenario.
- 9. Forecasted Load and Capability_07152020.xlsx This file contains MidAmerican's forecasted load and capability utilizing unforced capacity ratings.
- Historical and Forecasted ICAP and UCAP_07152020.xlsx this file shows historical installed capacity (ICAP) and unforced capacity (UCAP) values for the Illinois historical resources.
- 11. Generation and Load Data MidAmerican Energy Projection_07152020.xlsx. This file contains the hourly MWh generation and sales forecast, including a summary tab computing the on and off peak short energy positions and a tab summarizing the resources required, the resources already under contract and the quantities to be procured.

Sincerely,

D. Kom

Neil D. Hammer Director, Market Assessment, Compliance/Stds 1-515-252-6407

Cc: Torsten Clausen, Staff (Torsten.Clausen@illinois.gov); Vincent Musco, Bates White; (Vincent.musco@bateswhite.com) & Mario Bohorques, IPA (Mario.Bohorquez@illinois.gov)

Methodology for the 2021-2030 Illinois Electric Customers and Sales Forecasts

Note: MEC has projected retail kWh sales impacts due to COVID-19 and has incorporated those projected impacts into the retail kWh sales forecast and the peak demand forecast. MEC is projecting a downturn in retail kWh sales in 2020 and 2021 and then a gradual return to trend by 2024.

The 2021-2030 electric customer and sales forecasts were produced using econometric models on a monthly basis and are carried out in three steps using a top-down approach:

<u>Step 1</u>: The aggregate customer numbers were forecasted directly by revenue class:

- Residential
- Commercial
- Industrial
- Public authority.

Industrial kWh sales were forecast directly. The street lighting forecasts were forecast using trending. In this class, the current customer numbers were assumed to remain constant while the corresponding energy sales were projected to grow approximately 0.05% annually in IL. Similar to the peak demand forecast, the Quad Cities' economic and demographic drivers are assumed to be a good proxy for MidAmerican Illinois service territory electric sales and customers in these forecasts.

<u>Step 2:</u> For residential, commercial and public authority, econometric models were built to forecast kWh per customer. The resulting kWh per customer forecasts were multiplied by the appropriate customer forecasts to arrive at a kWh sales forecast. For industrial, the kWh per customer values for each revenue class were calculated using customer and sales forecasts, and employed to check the presence of any discontinuity between the historical and forecasted values.

<u>Step 3</u>: The projected customers and sales numbers were modeled using data specific to the area being forecast. Economic data for the Quad Cities' metropolitan statistical area was used in building the models.

Economic and demographic variables

Some variables, such as customer numbers, price, sales, revenue class, jurisdiction, etc., were obtained internally from the company database while other data, such as economic, demographic and weather, were received from external sources.

The economic and demographic data for the models were obtained from the IHS Markit, Inc. database. The economic and demographic data forecast was performed by IHS Markit, Inc. in January 2020. The list of variables considered for the electric sales and customer forecasts is shown in Table 1. For MEC's Illinois service territory, economic and demographic variables specific to the Quad Cities metropolitan area were used in the forecasting process. The Quad Cities area encompasses MEC's Illinois service territory.

Table 1: List of economic and demographic variables considered for the 2021-2030 forecasts

Q	Quad Cities MSA					
1	Real Gross Metropolitan Area Product (Millions 2012\$)					
2	Real Gross Metropolitan Area Product, Government, State and Local (Millions 2012\$)					
3	Real Gross Metropolitan Area Product, Manufacturing (Millions 2012\$)					
4	Population (Thousands)					
5	Households, Family and Non-Family (Thousands)					
6	Employment (NAICS), Total Non-Farm (Thousands)					
7	Employment (NAICS), State and Local Government (Thousands)					

Weather variables

The weather variables (derived from conditions at the Moline International Airport) used in the present forecast are:

Current month and previous month cooling degree days (CDD)

Current month and previous month heating degree days (HDD)

The present energy forecasts are based on billed data. This means that the sales numbers reflect, in part, the weather conditions from the previous month as well as the weather conditions for the current month, depending on the meter read date. To take this into account, both current month and previous month degree days are used in the modeling process. The forecasts used actual weather values for the historical period and normal weather values for the forecast period. In the 2021-2030 forecast, normal weather was defined as the average monthly degree days from 1990-2019.

To compare the growth rates the historical sales figures were "weather normalized" using average (normal) weather values. The normalization process consists of three steps. First, the historic predicted numbers were obtained from a regression model using the actual weather values. Second, the sales were re-calculated using average weather results.¹ Third, the difference between them, which defines the weather impact, was subtracted from the corresponding actual sales to arrive the normalized sales. In mathematical terms, the weather normalization can be written as follows:

Normalized Sales = $ActualSales - [PredictedSales_{ActualWedner} - PredictedSales_{NormalWedner}]$

¹ The same equation obtained in the first step was used.

Modeling

The econometric forecasting method used in this study assumes that the relationship between the dependent and independent variables is linear (additive) and defined as follows:

$$y = r + \alpha X + \beta Y + \gamma Z$$

where X, Y and Z are the variables, α , β and γ are the coefficients and r is the constant.

The forecasts were prepared using MetrixND software, version 4.7, developed by Itron, Inc. The forecasts typically involve finding a mathematical relationship between the dependent and independent variables. The steps taken in this forecast were as follows: The historical numbers since 2000 and the forecast numbers for economic variables until 2048 were obtained. These values were then exported into MetrixND and the analysis was carried out.

The primary criterion in selecting the variables was the relevance to the dependent variable being forecasted. Other considerations were the sign (the direction of change) and impact (the magnitude of elasticity coefficients) of variables on the forecasted dependent variable. Some of the statistical parameters important to the econometric model are:

<u>Adjusted R-Square:</u> It indicates the fraction of total variation explained by the independent variables in the regression. Its value ranges between 0 and 1, 1 being a perfect fit.

$$R^{2} = \frac{ExplainedVariation}{TotalVariation}$$

Adjusted R^2 takes into account the number of variables (k) with a constant sample size (n) as this leads to a decrease in the degree of freedom (n-k). Thus, adjusted R^2 is more conservative.

Adjusted
$$R^{2} = 1 - (1 - R^{2}) \left(\frac{n - 1}{n - k} \right)$$

<u>F-Statistics (Probability)</u>: This is an alternative measure of goodness of the fit. F-statistics number indicates the probability that the estimated regression fit is purely accidental. This number is preferred to be as low as possible as compared to a critical number of 5%.

<u>Mean Absolute Percentage Error (MAPE)</u>: MAPE defines the magnitude of errors in the model. It is the average of absolute values of the residual error percentages measured at each data point. The lower the MAPE number the better the model is considered to be.

<u>Durbin-Watson Statistic</u>: It tests the hypothesis that the errors from a model do not exhibit first order autocorrelation. In the absence of autocorrelation, the statistic has a value of 2. While it

varies between 0 and 4, a value above 2 indicates negative autocorrelation, while a value below 2 indicates positive autocorrelation.

Test parameters for statistical significance

The t-statistics and P-values show the statistical significance of independent variables in 95% confidence interval (or 5% significance level).

To evaluate the reasonableness of the model, the residual patterns and model fit statistics were studied. The residuals indicate the difference between the predicted and actual values. Any pattern associated with residuals suggests a missing variable(s). The residuals were studied through the autocorrelation factor and partial autocorrelation diagrams.

Customer forecasts Variables and model statistics

The customer forecasts in general were straight-forward and involved fewer variables. The customer variables used in the models of different revenue classes are:

- <u>Residential</u>: Number of households in the Quad Cities Metropolitan Statistical Area (MSA), binary variable for the Illinois rate case impact and monthly binary variables
- <u>Commercial:</u> Time trend variable, binary variables for the Illinois rate case impact and monthly binary variables
- <u>Industrials</u>: Non-farm employment for the Quad Cities MSA, binary variable for the Illinois rate case impact and monthly binary variables
- <u>Public authority</u>: Economic variable weighted between state and local government employment in the Quad Cities MSA and non-farm employment in the Quad Cities MSA, binary variable for the Illinois rate case impact and monthly binary variables

The statistics for the customer forecasts are tabulated in Table 2.

Table 2. Adjusted K and WAFE values for the customer forecasts
--

Revenue Class	MAPE
Residential	0.04%
Commercial	0.12%
Industrial	1.10%
Public Authority	0.49%

Customer forecast results

The monthly customer numbers are shown below at an average annual level for each revenue class.

				Public	Street	
	Residential	Commercial	Industrial	Authority	Lighting	Total
2012	75,693	7,716	107	1,376	44	84,936
2013	75,765	7,709	105	1,389	44	85,012
2014	75,812	7,765	99	1,392	44	85,111
2015	74,455	8,998	56	1,302	42	84,852
2016	74,298	9,209	49	1,288	42	84,886
2017	74,159	9,401	39	1,371	43	85,014
2018	73,933	9,653	38	1,410	44	85,079
2019	73,873	9,803	40	1,422	44	85,183
2020	74,035	9,867	42	1,402	44	85,390
2021	74,155	9,903	43	1,407	44	85,552
2022	74,275	9,939	43	1,412	44	85,713
2023	74,395	9,975	44	1,413	44	85,871
2024	74,515	10,011	44	1,413	44	86,027
2025	74,635	10,047	45	1,415	44	86,185
2026	74,755	10,083	45	1,417	44	86,344
2027	74,875	10,119	46	1,418	44	86,501
2028	74,995	10,155	46	1,419	44	86,658
2029	75,115	10,191	46	1,419	44	86,815
2030	75,235	10,227	46	1,422	44	86,974

 Table 3: Summary of the historical and forecast average annual customer numbers in different classes

Sales forecasts

Variables and model statistics

The energy forecasts are more complicated and involve more variables than do the customer forecasts. For the residential, commercial and public authority classes, sales are determined by multiplying customers by use per customer. For the industrial class, sales are modeled directly. For the street lighting class, sales are forecast using trending. The sales forecast variables used in the industrial class model are:

- <u>Industrial:</u> An weighted index made up of the real gross metropolitan area product for the Quad Cities MSA, the non-farm employment in the Quad Cities MSA and the population of the Quad Cities MSA, the number of billing days in each month, current month cooling degree days, industrial retail average revenue lagged twelve months, current monthly heating degree days and monthly binaries.

The statistics for the sales forecasts are tabulated in Table 4.

Table 4: Adjusted R² and MAPE values for the sales forecasts

Revenue Class	MAPE		
Industrial	8.18%		

The comparison of tables (Tables 2 and 4) clearly indicates that better statistics were obtained for the customer models than sales models. The reason is that there is more uncertainty in the sales forecasts due to the presence of multiple drivers and their possible interactions. For example, a relatively small change in the historical usage pattern of a large industrial customer could have a measureable impact on the total energy usage in this class. Similarly, the changes in billing cycle could have significant effect on the billed sales.

Sales forecast results

The monthly billed sales numbers were forecasted at an aggregate level for each revenue class. The annual historical data and 10-year forecast values are summarized in Table 5.

				Public	Street	
	Residential	Commercial	Industrial	Authority	Lighting	Total
2012	679,471	437,523	712,702	191,436	12,647	2,033,778
2013	687,543	443,376	686,082	185,177	12,599	2,014,777
2014	676,836	435,336	681,658	177,095	12,595	1,983,520
2015	627,826	461,907	641,935	163,747	10,129	1,905,544
2016	646,439	466,908	634,925	169,402	9,949	1,927,623
2017	606,492	465,721	637,991	163,514	10,487	1,884,204
2018	663,656	478,047	626,337	169,615	10,829	1,948,484
2019	640,126	459,416	619,944	166,444	6,735	1,892,665
2020	610,146	409,589	601,829	164,499	8,335	1,794,397
2021	612,350	405,865	546,062	159,688	9,671	1,733,636
2022	609,661	437,590	581,334	165,186	9,676	1,803,447
2023	606,982	471,809	614,770	170,415	9,681	1,873,656
2024	604,313	509,027	650,595	175,757	9,686	1,949,378
2025	601,655	509,581	652,710	175,678	9,691	1,949,314
2026	599,006	510,128	655,528	175,715	9,696	1,950,073
2027	596 <i>,</i> 368	510,669	658,703	176,030	9,700	1,951,472
2028	593,740	511,205	661,480	176,285	9,705	1,952,414
2029	591,122	511,735	664,658	176,418	9,710	1,953,643
2030	588,514	512,258	668,032	176,555	9,715	1,955,075
The figure						

Table 5: Summary of the historical and forecast annual billed sales of different revenue classes (MWh)

Usage per customer (UPC) forecasts

For the residential, commercial and public authority classes, kWh per customer values was forecast using econometric models. For the industrial and street lighting classes, the kWh per customer forecast values were calculated using the forecast sales and customer numbers data.

UPC forecast results:

<u>Residential model</u> – Number of members per household in the Quad Cities MSA, billing days, cooling degree days (current month), heating degree days (current month), binary variable for the Illinois rate case impact and monthly binaries

<u>Commercial model</u> – Time trend variable, cooling degree days (current month), heating degree days (lagged month), billing days, hours of light, binary variable for the Illinois rate case impact and monthly binaries

<u>Public Authority model</u> – State and local government employment in the Quad Cities MSA, billing days, heating degree days (current month), cooling degree days (current month), hours of light, binary variable for the Illinois rate case impact, an autoregressive term and monthly binaries

Table 6: Model Statistics

Revenue Class	MAPE
Residential	2.09%
Commercial	3.16%
Public Authority	4.04%

Methodology for the 2021-2030 Monthly Illinois Non-Coincident Electric Gross Peak Demand Forecast

2019 Electric Gross Peak Demand

The gross peak numbers used in the analysis are the historical gross peaks, which take into account demand side management impacts.

The gross peak load value was calculated according to the following equation:

Gross Peak = Native Peak Load + Residential Direct Load Control + Curtailment

<u>Native Peak Load</u>: For MEC's Illinois service territory, the 2019 native system peak load of 432 MW occurred on July 19, 2019 in the hour ending at 6:00 p.m. Central Daylight Time. Note: this figure does include the load of MEC Illinois' distribution only customers.

<u>SummerSaver Program</u>: SummerSaver is MEC's residential direct load control program. Load displaced due to the energy saving program which aims to curtail energy usage of on-peak hours was also received from the energy efficiency group. At the time of gross system peak, the SummerSaver program was not in effect.

<u>Curtailment</u>: Load displaced due to curtailment of customers on an interruptible rate. There was no curtailment event in effect at the time of gross system peak.

Source Data and Model

The historical hourly data underlying the model is load research data by class for MEC's Illinois service territory. The data was divided into the following classes: residential, small commercial, large commercial, small industrial and large industrial. This data was at the meter level. MEC used data from January 1, 2009 through December 31, 2019 to build a monthly non-coincident electric gross peak demand model for its Illinois service territory.

The class data was added together to derive the total Illinois load. Next, the monthly peak dates and times were calculated. Weather data, taken from the weather station at the Quad City International Airport in Moline, IL, associated with the peak dates were compiled for use in the model.

The forecasting model consists of an economic driver variable, a number of weather variables and monthly indicator variables.

Economic variables

Net Energy for Load

For the 2021-2030 forecast, MEC used the area's net energy for load as the economic driver.

Weather variables

Six weather variables were used:

- 1. Summer peak day maximum temperature (summer = May through September)
- 2. Summer peak day average daily dew point
- 3. Winter peak day minimum temperature (winter = November through March)
- 4. Winter peak day three day build up (the sum of the average temperatures of the three days prior to the winter peak day)
- 5. Shoulder peak day HDD65 (shoulder = April and October; HDD65 = 65 less the peak day average temperature, if the average temperature is less than 65; = 0 if the average temperature is greater than 65)
- 6. Shoulder peak day CDD65 (shoulder = April and October; CDD65 = the peak day average temperature less 65, if the average temperature is greater than 65; = 0 if the average temperature is less than 65)

The forecast weather was calculated using the rank and average method for 2008 through 2019. First, the weather variables, as measured on the monthly peak days, were averaged for each month across the years. This revealed the monthly order for each weather variable throughout the year. For each year, the peak day weather variables were then ranked. Next, the ranked results were averaged: the highest values averaged, the second highest values averaged, and so on. The average of the highest values was then assigned to the month with the highest value, the average of the second highest values was then assigned to the month with the second highest value and so on.

The remaining explanatory variables in the model were monthly binary variables and a binary variable indicating whether or not the gross peak demand occurred on a Friday.

MEC Illinois monthly non-coincident peak demand forecast	
	MEC Illinois monthly non-coincident peak demand forecast

		Peak MW at	
Year	Month	Generator (MEC served)	
2020	1	296.66	
2020	2	273.78	
2020	4	252.53	
2020	5	287.46	
2020	7	401.81	
2020	8	389.57	
2020	10	260.74	
2020	11	233.11	
2020	12	274.03	
2021	2	260.18	
2021 2021	3	239.17 236.90	
2021	5	273.45	
2021 2021	6 7	317.36 388.24	
2021	8	375.86	
2021 2021	9 10	347.00 244.29	
2021	11	220.29	
2021	12	258.98	
2022	2	271.86	
2022	3	250.66	
2022	4	246.61	
2022	6	330.20	
2022 2022	7	403.85 390.90	
2022	9	360.89	
2022	10 11	256.71 230.86	
2022	12	271.24	
2023	1	307.02	
2023	2	283.78 262.37	
2023	4	260.85	
2023	5	298.38 343.09	
2023	7	419.53	
2023	8	405.98	
2023	10	269.22	
2023	11	241.44	
2023	12	283.55 320.91	
2024	2	296.32	
2024	3	274.70	
2024	5	311.67	
2024	6	356.77	
2024	8	422.02	
2024	9	389.57	
2024 2024	10	282.68 252.80	
2024	12	296.82	
2025	1	321.26 296.68	
2025	3	275.08	
2025 2025	4	274.10	
2025	6	357.23	
2025	7	436.73	
2025	8 9	422.33	
2025	10	283.15	
2025	11	253.24 297.28	
2026	1	321.73	
2026 2026	2	297.15 275.59	
2026	4	274.66	
2026 2026	5	312.79	
2026	7	437.43	
2026	8	423.23	
2026	10	283.82	
2026	11	253.93	
2026	12	322.29	
2027	2	297.75	
2027 2027	3	276.19 275.27	
2027	5	313.46	
2027 2027	6 7	358.63 438.07	
2027	8	423.86	
2027	9	391.49	
2027	10	284.35 254.42	
2027	12	298.41	

Weather in the Hourly Model

Using average daily temperature as an example, this is how a chaotic normal weather pattern (weather pattern used to create a realistic 8760 for dispatch simulations) is created:

- 1. Sort the Order variable (a ranking of the days in the month by average temperature, determined over the 1990-2019 time period) and the associated dates from highest to lowest within each month.
- 2. Sort the average temperature variable from highest to lowest within each month.
- 3. Assign the highest average temperature value to the date that corresponds to the highest value in the Order variable within the month.
- 4. Sort the Order variable by date for each month.
- 5. Create the average temperature output variable for the reference year.
- 6. Rotate the average temperature output variable to multiple years for forecasting purposes.

Hourly Load Shape Models by Class

Hourly models by class (residential, commercial, industrial, public authority and street lighting) were developed in MetrixND. The source data was hourly load research data by class for MEC's service territory. The classes of load research data were residential, small commercial, large commercial, small industrial and large industrial. The residential class load shape was developed using the residential load research data. The commercial class load shape was developed by combining the small and large commercial load research data. The industrial class load shape was developed by combining the small and large industrial load research data. The industrial class load shape was developed using the small and large industrial load research data. The street lighting load shape was a lighting load shape from MEC's load research library. The public authority class load shape was developed by using a weighted average of the residential, commercial, industrial and street lighting class load shapes, based on the rate codes that made up the public authority class. Making use of linear regression, the models were estimated on data from January 1, 2016 through December 31, 2019. The models contain weather, binary and trend explanatory variables. There were twenty four models for each class. A forecast was developed through May 31, 2027, using the weather forecast developed as described above.

Long-Term Hourly Modeling

The long-term hourly forecast was developed in MetrixLT. The hourly profiles by class were calibrated to existing calendar month sales forecasts by class and an overall monthly non-coincident peak demand forecast.

Energy Efficiency in the Load Forecast

MEC has energy efficiency programs operating in its Illinois service territory. Estimated past energy savings are implicit in the historical data used to derive the electric sales forecast models. Without adjustment, this method implies that the level of future estimated program savings will be similar to past estimated program savings. Estimated program impacts in the forecast period are not projected to deviate measurably from estimated historical levels, so no adjustment was made to the forecasting models.

Load Forecast for the Retail Choice Switching

MEC has one active alternative retail supplier in its Illinois service territory. The retail choice switching forecast was derived by reviewing recent switching activity and projecting forward recent trends. Switched load is expected to grow from 16.9 MW in 2020 to 17.2 MW in 2027.

	Residential	Commercial	Industrial	Authority	Lighting		MW
	kWh	kWh	kWh	kWh	kWh	Total kWh	Demand
lan-21	36.270	2,464,838	2.500.000	880,880	-	5.881.989	12.49
Feb-21	45.639	2.045.587	2,500,000	660,660	-	5.251.886	12.89
Mar-21	45,913	2,374,742	2,500,000	1.186.136	-	6.106.791	13.03
Apr-21	37,115	4,772,272	2,500,000	1,542,311	-	8,851,698	13.53
May-21	33,086	4,029,318	2,500,000	1,652,476	-	8,214,880	14.83
Jun-21	27,532	2,207,303	2,500,000	1,762,641	-	6,497,476	16.09
Jul-21	18,775	2,159,948	2,500,000	1,762,641	-	6,441,364	16.99
Aug-21	58,670	2,529,905	2,500,000	1,762,641	-	6,851,216	16.05
Sep-21	39,368	1,862,544	2,500,000	1,758,687	-	6,160,599	15.79
Oct-21	38,596	3,492,632	2,500,000	1,432,146	-	7,463,374	13.63
Nov-21	33,193	3,795,357	2,500,000	1,117,740	-	7,446,289	12.12
Dec-21	45,103	2,526,723	2,500,000	1,255,768	-	6,327,593	13.32
Jan-22	36,325	2,472,236	2,500,000	882,202	-	5,890,763	12.52
Feb-22	45,708	2,051,726	2,500,000	661,651	-	5,259,085	12.92
Mar-22	45,982	2,381,869	2,500,000	1,187,916	-	6,115,767	13.07
Apr-22	37,171	4,786,595	2,500,000	1,544,625	-	8,868,391	13.57
May-22	33,136	4,041,411	2,500,000	1,654,955	-	8,229,503	14.87
Jun-22	27,574	2,213,927	2,500,000	1,765,286	-	6,506,787	16.13
Jul-22	18,803	2,166,431	2,500,000	1,765,286	-	6,450,520	17.03
Aug-22	58,758	2,537,498	2,500,000	1,765,286	-	6,861,542	16.09
Sep-22	39,427	1,868,134	2,500,000	1,761,326	-	6,168,887	15.83
Oct-22	38,654	3,503,114	2,500,000	1,434,295	-	7,476,063	13.67
Nov-22	33,243	3,806,748	2,500,000	1,119,417	-	7,459,407	12.15
Dec-22	45,171	2,534,306	2,500,000	1,257,652	-	6,337,129	13.35
Jan-23	36,379	2,479,656	2,500,000	883,526	-	5,899,561	12.55
Feb-23	45,776	2,057,884	2,500,000	662,644	-	5,266,305	12.95
Mar-23	46,051	2,389,018	2,500,000	1,189,698	-	6,124,767	13.10
Apr-23	37,227	4,800,961	2,500,000	1,546,943	-	8,885,130	13.60
May-23	33,185	4,053,541	2,500,000	1,657,439	-	8,244,165	14.90
Jun-23	27,615	2,220,572	2,500,000	1,767,935	-	6,516,121	16.17
Jul-23	18,832	2,172,933	2,500,000	1,767,935	-	6,459,699	17.07
Aug-23	58,846	2,545,114	2,500,000	1,767,935	-	6,871,894	16.13
Sep-23	39,486	1,873,740	2,500,000	1,763,969	-	6,177,195	15.87
Oct-23	38,712	3,513,628	2,500,000	1,436,447	-	7,488,787	13.70
Nov-23	33,293	3,818,173	2,500,000	1,121,096	-	7,472,561	12.18
Dec-23	45,239	2,541,912	2,500,000	1,259,539	-	6,346,690	13.38
Jan-24	36,434	2,487,098	2,500,000	884,851	-	5,908,383	12.58
Feb-24	45,845	2,064,060	2,500,000	663,638	-	5,273,544	12.98
Mar-24	46,120	2,396,188	2,500,000	1,191,484	-	6,133,791	13.13
Apr-24	37,282	4,815,370	2,500,000	1,549,264	-	8,901,916	13.64
May-24	33,235	4,065,706	2,500,000	1,659,926	-	8,258,867	14.94
Jun-24	27,657	2,227,236	2,500,000	1,770,587	-	6,525,480	16.21
Jul-24	18,860	2,1/9,454	2,500,000	1,770,587	-	6,468,902	17.11
Aug-24	58,934	2,552,752	2,500,000	1,770,587	-	6,882,274	16.17
Sep-24	39,546	1,879,364	2,500,000	1,766,616	-	6,185,525	15.91
Oct-24	38,770	3,524,173	2,500,000	1,438,602	-	7,501,545	13.74
NOV-24	33,342	3,829,632	2,500,000	1,122,779		7,485,753	12.21
Dec-24	45,500	2,549,541	2,500,000	1,201,429	-	6,356,276	13.42
Jan-25	30,489	2,494,562	2,500,000	666,179	-	5,917,230	12.01
Mar 25	45,914	2,070,255	2,500,000	1 102 271	-	5,280,803	13.02
Apr 25	40,189	2,403,379	2,500,000	1,193,271	-	8,142,840	13.10
Apr=23	37,338	4,823,822	2,300,000	1,551,585		8,318,743	14.09
IVIdy-25	33,263	4,077,909	2,500,000	1,002,410	-	6,273,010	14.98
Jul-25	18 888	2,233,921	2,500,000	1 773 244		6 478 128	17.16
Jui=2.5	10,000	2,163,553	2,300,000	1,773,244		6 902 690	16.21
Son-25	39,023	1 885 004	2,500,000	1 769 266		6 193 876	15.05
Oct-25	38 870	3,534 750	2,500,000	1,440 761	-	7,514 330	13.55
Nov-25	33 392	3,841 126	2,500,000	1.124 463	-	7.498 981	17 74
Dec-25	45,374	2,557,193	2,500,000	1,263,322	-	6.365.889	13.45
Jan-26	36 542	2,502,049	2,500,000	887 500	-	5,926 101	12 64
Feb-26	45,983	2,076.468	2,500.000	665.631	-	5,288.083	13.05
Mar-26	46.258	2,410.597	2,500.000	1.195.062	-	6.151.913	13.20
Anr-26	37.394	4,844.318	2,500.000	1.553.917	-	8,935.629	13.70
Mav-26	33.335	4,090,147	2,500.000	1.664.911	-	8,288,393	15.01
Jun-26	27,740	2,240,625	2,500,000	1.775.905	-	6.544.270	16.29
Jul-26	18.917	2,192.556	2,500.000	1,775.905	-	6,487.377	17.20
Aug-26	59.111	2,568.098	2,500.000	1,775.905	-	6,903.114	16.25
Sep-26	39.665	1,890.662	2,500.000	1,771.921	-	6,202.247	15.99
Oct-26	38,887	3,545,358	2,500,000	1,442,923	-	7,527,168	13.81
Nov-26	33,443	3,852,654	2,500,000	1,126,151	-	7,512,247	12.27
Dec-26	45,442	2,564,868	2,500,000	1,265,217	-	6,375,527	13.48
Jan-27	36,598	2,509,558	2,500,000	888,840	-	5,934,997	12.67
Feb-27	46,052	2,082,700	2,500,000	666,630	-	5,295,382	13.08
Mar-27	46,328	2,417,827	2,500,000	1,196,855	-	6,161,010	13.23
Apr-27	37,451	4,858,857	2,500,000	1,556,248	-	8,952,555	13.74
May-27	33,385	4,102,423	2,500,000	1,667,409	-	8,303,217	15.05
Jun-27	27,781	2,247,350	2,500,000	1,778,570	-	6,553,701	16.33
Jul-27	18,945	2,199,137	2,500,000	1,778,570	-	6,496,651	17.24
Aug-27	59,200	2,575,806	2,500,000	1,778,570	-	6,913,575	16.30
Sep-27	39,724	1,896,336	2,500,000	1,774,580	-	6,210,640	16.03
Oct-27	38,945	3,555,999	2,500,000	1,445,088	-	7,540,032	13.84
Nov-27	33,493	3,864,216	2,500,000	1,127,840	-	7,525,550	12.30
Dec-27	45,511	2,572,565	2,500,000	1,267,116	-	6,385,192	13.52

Table 8: Retail Switching: Monthly Peak Demand and Energy Forecasts

Table 9: Retail Switching:	Monthly Customer Count Forecasts	
----------------------------	----------------------------------	--

				Public	Street	
	Residential	Commercial	Industrial	Authority	Lighting	Total
	1103100111101	commercial		Authority	Lighting	10(01
Jan-21	77	173	5	22	-	278
Feb-21	77	172	5	22	-	277
Mar-21	77	171	5	22	-	276
Arr 21	77	172	5	22		270
Apr-21	//	1/2	5	22	-	2//
May-21	77	172	5	22	-	277
Jun-21	77	172	5	22	-	277
Jul 21	77	173	F			277
Jui-21	//	1/2	5	22	-	2//
Aug-21	77	172	5	22	-	277
Sep-21	77	172	5	22	-	277
Oct 21		173	F			277
Oct-21	//	1/2	5	22	-	2//
Nov-21	77	172	5	22	-	277
Dec-21	77	172	5	22	-	277
Ian 22	77	174	5	22		270
Jaii-22		1/4	5	22		270
Feb-22	77	173	5	22	-	277
Mar-22	77	172	5	22	-	276
Apr. 22	77	172	5	22		277
Api-22		1/3	5	22		277
May-22	17	173	5	22	-	277
Jun-22	77	173	5	22	-	277
Jul. 22	77	172	5	22		277
Jui-22		1/3	5	22	-	277
Aug-22	77	173	5	22	-	277
Sep-22	77	173	5	22	-	277
Oct-22	77	173	5	22	-	277
000 22		175				277
Nov-22	77	173	5	22	-	277
Dec-22	77	173	5	22	-	277
Jan-77	77	17/	5	22	-	270
5011-25		1/4			-	2/9
Feb-23	77	173	5	22	-	278
Mar-23	77	172	5	22	-	277
Apr-22	77	172	5	22	-	278
M 27		1,3	-	22		270
May-23	//	1/3	5	22	-	278
Jun-23	77	173	5	22	-	278
Jul-23	77	173	5	22	-	278
50.25	77	175	5			270
Aug-23	11	1/3	5	22	-	2/8
Sep-23	77	173	5	22	-	278
Oct-23	77	173	5	22	-	278
New 22	77	173	F	22		270
1004-23	//	1/5	5	22	-	2/0
Dec-23	77	173	5	22	-	278
lan-24	77	175	5	22	-	279
5ab 24		474	-			270
Feb-24	//	1/4	5	22	-	2/8
Mar-24	77	173	5	22	-	277
Apr-24	77	174	5	22	-	278
May 24		174	F			270
iviay-24	//	1/4	5	22	-	2/8
Jun-24	77	174	5	22	-	278
Jul-24	77	174	5	22	-	278
Aug. 24	77	174	6	22		279
Aug-24	//	1/4	5	22	-	278
Sep-24	77	174	5	22	-	278
Oct-24	77	174	5	22	-	278
Nov 24	77	174	5	22		279
100-24	//	1/4	5	22	-	278
Dec-24	77	174	5	22	-	278
Jan-25	77	175	5	22	-	280
Feb-25	77	174	5	22	-	279
100 25		174				275
Mar-25	77	173	5	22	-	278
Apr-25	77	174	5	22	-	279
May 25	77	174	5	22		270
Iviay-25		1/4	5	22	-	2/5
Jun-25	77	174	5	22	-	279
Jul-25	77	174	5	22	-	279
Δµσ-25	77	174	E	22		270
Aug-20		1/4			-	2/9
sep-25	77	174	5	22	-	279
Oct-25	77	174	5	22	-	279
Nov-25	77	17/	5	22	-	270
D- 25		1/4	-	22		2/3
Dec-25	71	174	5	22	-	279
Jan-26	77	176	5	22	-	280
Feb-26	77	175	5	22	-	270
Mc- 20	, ,	474	-	22		275
iviar-26	17	1/4	5	22	-	278
Apr-26	78	175	5	22	-	279
May-26	78	175	5	22	-	279
lup 20	70	175				270
Jun-26	78	1/5	5	22	-	2/9
Jul-26	78	175	5	22	-	279
Aug-26	78	175	5	22	-	279
Son 20	70	175				
3ep-20	78	1/5	5	22	-	2/9
Oct-26	78	175	5	22	-	279
Nov-26	78	175	5	22	-	279
Dec 26	70	175	F	22		270
Det-20	/8	1/5		22	-	2/9
Jan-27	78	176	5	22	-	281
Feb-27	78	175	5	22	-	280
Mar-27	78	174	5	22	-	270
A. 27	/0	1/4		22	-	2/9
Apr-27	78	175	5	22	-	280
May-27	78	175	5	22	-	280
lun-27	79	175	5	22	-	280
1.1.27	70	475	-			200
JUI-27	/8	1/5	5	22	-	280
Aug-27	78	175	5	22	-	280
Sep-27	78	175	5	22	-	280
Oct 27	70	175	F	22		200
UCT-2/	78	1/5	5	22	-	280
Nov-27	78	175	5	22	-	280
Dec-27	78	175	5	22	-	280

	Small Industrial		Residential		Large Commercial		Small Commercial		Large Industrial		Lighting		Total	
	kWh	kW Demand	kWh	kW Demand	kWh	kW Demand	kWh	kW Demand	kWh	kW Demand	kWh	kW Demand	kWh	kW Demand
Jan-15	23.082.533	40,129	53,796,551	122,682	31,587,487	59,298	16.527.816	39,432	38,535,453	66.824	1.757.228	3,929	165.287.066	298.525
Feb-15	21,350,307	40,119	49,855,826	110.346	29.312.362	56,665	15,298,966	40,460	34,801,640	68,531	1,476,341	3,929	152,095,441	274,273
Mar-15	23,060,882	39,898	43,915,206	98,952	28,554,546	55,282	14,932,529	38,138	38,191,489	62,873	1,468,286	3,929	150,122,938	261,893
Apr-15	21,628,894	41.037	37,368,479	89,586	26,225,378	53,007	13,382,509	35,362	37,569,752	64,943	1,258,980	3,929	137,433,992	236,626
May-15	23 552 990	44 593	42 664 820	109.069	28 287 187	58 738	13 220 888	36 672	38 563 411	67 583	1 158 256	3 929	147 447 553	285 712
Jun-15	25,103,490	47,623	61,284,244	180,673	31,856,580	68,503	15,358,917	42,236	42.017.393	70,714	1.051.376	3,929	176.672.001	382.043
Jul-15	26,899,977	48 804	74 223 189	205 728	34 838 869	73 693	16,891,119	46.053	42 599 298	70,929	1 117 783	3 929	196 570 235	412 481
Aug-15	26,824,918	49 175	66 426 087	196 257	33 465 146	68 753	15 930 888	40 493	40 458 702	68,055	1 237 303	3 929	184 343 044	363,968
Sep-15	25,416,257	50.271	60,162,321	194,554	32,009,481	73,963	15,560,593	47.054	27.318.817	71,402	1.354.137	3,929	161,821,607	400.665
Oct-15	22 952 773	44 531	40 807 245	102 629	27 346 760	57 045	16 016 337	41 908	35 123 855	62 973	1,570,057	3 929	143 817 027	252 989
Nov-15	21 158 547	44 222	44 047 527	104 121	26 682 217	50,546	14 657 926	38 274	25 370 639	60,481	1 661 940	3 929	133 578 796	238 785
Dec-15	21,062,194	38,667	53 088 386	111 192	28 739 821	51 288	15 062 674	37,907	33 630 402	63 486	1 793 116	3 929	153 376 594	264 108
lan-16	21 168 803	35,857	55 821 714	121 179	26 601 397	48.002	22 661 733	47 084	40 620 290	69,100	1 734 512	3,879	168 608 448	289,003
Eeb-16	19 520 513	35,265	48 283 197	114 934	24 181 413	46 491	19 657 565	43 641	38 251 196	69,962	1,506,902	3,879	151 400 787	274 902
Mar-16	20 302 200	34,826	42 835 667	94 914	23 785 437	43 444	17 966 766	41 978	44 577 120	71,950	1 443 616	3,879	150 910 806	260 743
Apr-16	19 680 897	35 397	40,005,602	89,700	23 018 637	45 778	16 366 787	38 587	39 494 089	70,510	1 237 598	3,879	139 803 609	241 241
May-16	20 932 855	38,885	43,969,041	148 257	24 894 368	55 349	16 836 165	42 626	40 750 360	71,076	1 139 598	3,879	148 522 388	309.038
lup=16	22 743 794	40 798	74 994 261	195.055	30 274 051	63,401	20 734 836	49,430	39 024 949	70,671	1,037,139	3,879	188 809 030	386,918
Jul-16	23 307 675	42,096	77 506 472	211 441	30,920,639	67 477	21,069,087	54 092	41 873 228	72 152	1 106 048	3,879	195 783 150	424 506
Aug-16	24 031 429	43,009	71 719 002	190,571	30 754 170	64 323	21,005,007	55 112	42 922 767	74 666	1 226 027	3,879	192 268 756	401 024
Sep-16	22,050,541	42 149	54 535 194	181 490	26 990 902	62 551	18 759 543	50,939	32,890,070	69,655	1 342 061	3,879	156 568 312	390,039
Oct-16	20,061,586	39 762	40 358 036	111 883	23,888,541	51 210	20 323 690	47.867	29,516,400	55,000	1,555,061	3,870	136 604 215	270.049
Nov-16	19 912 679	35,871	40,330,330	97 613	22,300,341	42 661	19 909 739	47,007	35 169 591	70 350	1,644,205	3,879	140 764 419	265 753
Dec-16	20 762 354	35,924	57 938 860	133,863	25 818 971	46 242	23 675 009	52 739	44 794 868	73 332	1 770 647	3,879	174 760 709	300 137
Jan-17	17 643 075	20,760	57,930,000	117 580	20,385,857	35,826	30 420 713	66,064	44,794,000	71 152	1 734 512	3,879	170,156,440	206.042
Eeb-17	15 756 617	29,462	44 021 650	106 654	17 287 706	33,020	24 262 955	61 208	37 197 836	70,011	1,754,512	3,879	139 984 021	268 951
Mar-17	17 280 745	29,402	45 605 028	91 439	18 901 840	33 169	26,010,158	57 160	44 233 569	72 242	1 443 616	3,879	153,474,956	257 166
Apr-17	16 283 695	29,096	37 404 411	81 857	17 209 645	32,876	21 844 958	51 842	37 253 573	64,808	1 237 598	3,879	131 233 880	224 477
May-17	17 770 081	33 320	40 409 445	129 352	18 635 395	42 498	22 585 265	58 269	43 296 459	73 617	1 139 598	3,879	143 836 244	303 334
lup-17	18 905 124	35,256	59 570 771	169,806	22 132 809	48 273	26 629 776	69,203	44 361 827	75,071	1,1037,139	3,879	172 637 446	373 755
Jul-17	19 975 106	36.077	74 492 245	179 789	24 423 954	50,700	29 493 396	75 994	33 469 146	70,913	1 106 048	3,879	182,959,896	371 881
Aug-17	19 298 369	33,375	53 880 710	143,099	21,736,650	45 152	26 592 946	63,066	43 539 287	72 918	1 226 027	3 879	166 273 989	338 195
Sep-17	18 157 551	34 651	50,680,626	140,000	20 241 510	46 811	24,688,069	67.089	41 884 820	69 945	1 342 061	3,879	156 994 638	354 368
Oct-17	17 728 362	31 737	41 595 585	100,631	18 195 001	38 461	27 198 973	68,520	44 249 008	71 340	1,555,061	3,879	150,534,000	253 516
Nov-17	16 558 923	29.426	47 417 055	96,504	17 623 034	31,673	30 994 744	72 586	39 123 520	67,903	1 644 205	3 879	153 361 481	267,234
Dec-17	17 098 024	29,420	59 350 639	138,883	19 482 390	34,996	30,470,912	65,697	40 418 303	69,139	1 770 647	3,879	168 590 915	302 752
Jan-18	18 524 003	31 257	62 788 813	144 730	15 485 175	26,993	38 685 763	86 788	41 152 504	70,760	1 734 512	3,879	178 370 770	310 974
Feb-18	16 517 562	30,908	53 484 994	122 320	13 543 018	26,000	33 275 863	75,351	37 460 696	71 191	1 457 256	3 879	155 739 389	293 550
Mar-18	17 377 100	28,976	47 462 847	96,877	13 558 806	23,368	31 328 752	68 552	38 094 821	70,405	1 443 616	3 879	149 265 942	250,790
Apr-18	16 768 543	30 419	42 214 934	94 681	12 778 232	23,892	29 727 850	69.943	40 837 875	69,904	1 237 598	3 879	143 565 031	267 425
May-18	19.072.982	35.055	50 233 294	171 243	14 880 115	33 139	28 855 187	78 128	42 650 914	69,807	1 139 598	3 879	156 832 091	348 731
.lun-18	19 416 471	36,279	64 600 808	178 871	16 323 550	36,258	32 078 038	82 288	39 072 173	73 591	1,037,139	3 879	172 528 179	367 227
Jul-18	20.035.969	36,770	72,249,504	193,532	17,138,715	36,227	34,395,732	88,588	43.055.039	71,861	1,106,048	3,879	187,981,006	401,105
Aug-18	20,216,858	34,917	65,855,522	179,191	16,695,156	34,247	33,047,543	81,443	40,712,492	69,745	1.226.027	3,879	177,753,597	357,930
Sep-18	18,106,776	35,616	50,344,979	156,188	14,104,690	32,946	28,295,191	81,725	37,401,667	68,184	1.342.061	3,879	149,595,364	353,268
Oct-18	17,444,664	33,012	41,124,561	103,600	12,690,746	28,770	32,834,109	74,260	42.617.339	69,688	1,555,061	3,879	148,266,479	269,414
Nov-18	16,667,259	28.764	51,663,750	114.281	13,106,795	23.599	33,876,768	73.797	42,008.059	70.859	1,644,205	3.879	158,966,837	273.559
Dec-18	16,745,952	28,904	58,489,703	119,213	13,735,500	23,561	34,848,285	74,384	42,241,265	67.928	1.770.647	3,879	167,831,352	281,505
Jan-19	19,219,926	32,148	62,638,847	146.025	11,493,073	20,808	39,434,893	81,717	43,730,226	70.018	1.535.019	3,436	178.051.984	313,738
Feb-19	17.518.773	31,715	57,334,851	125.012	10.506.453	19,864	36,426,413	79,551	34,710,531	67,196	1,286,149	3,436	157,783,170	298,185
Mar-19	18,391.692	32.070	50,686.627	128.002	10,450.191	19.712	34,176.828	78.560	42,205.162	70.443	1,283.057	3.436	157,193.557	296.048
Apr-19	17,655,912	31,918	37,750,125	80,708	9,247,737	17,237	28,506,124	67.069	43,408,049	71,723	1.099.125	3,436	137,667,072	240,921
May-19	18,522,437	34,686	40.327.593	112,209	9,930,216	22,327	28,562,401	71,885	42,165,555	72.613	1.010.309	3,436	140.518.511	272,164
Jun-19	19,005,596	35.078	54.379.555	175,229	11.308.514	24,493	30.638.887	83,052	37,680,599	73.673	916,109	3,436	153,929,261	318,318
Jul-19	21,093,154	37,330	74,253,594	192,187	13.066.516	27,922	39,112,382	94,788	40,134,377	71,174	978,184	3,436	188,638,206	397,607
Aug-19	20,462,808	36,346	59,991,764	160,916	12.060.346	24,728	35.063.377	85.026	39,505,374	66,125	1.087.844	3,436	168,171,513	349,275
Sep-19	19,526,051	37,075	51,971,577	146,560	11,147,698	23,774	31,196,324	83,172	36,756,606	64,560	1,188,514	3,436	151,786,771	324,084
Oct-19	18,552,005	34,602	41,713,664	107.323	9,614,938	21.029	32,494,937	79,503	37.597.855	69,740	1.375.138	3,436	141.348.537	275,242
Nov-19	17,675,090	31,003	48.891.551	102,835	9,958,203	18,369	39,407,298	84,445	32,773,372	67,243	1,455,422	3,436	150,160,936	267.044
Dec-19	17,913,209	31,426	55,995,260	114,385	10,442,405	18,211	37,950,628	79,857	42,647,251	73,051	1,570,980	3,436	166,519,733	281,009
											· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Table 10: Multi-Year Historical Load Detail

Low and High Load Forecast Scenarios

The required low and high hourly load forecast scenarios were created by taking the 95% confidence interval around each class-level sales, customer and use per customer forecast and the 95% confidence interval around the non-coincident gross peak demand forecast. MetrixND, the load forecasting software used for the sales, customers use per customer and non-coincident peak demand forecasts, provided the upper and lower bounds of a 95% confidence interval around each monthly forecast value. This software feature allowed the construction of upper and lower bound forecasts for the residential, commercial, industrial and public authority sales forecasts. The street lighting sales forecast was multiplied by 0.99 and 1.01 to generate, respectively, a lower and upper bound street lighting sales forecast. As mentioned above, the monthly residential, commercial and public authority sales forecasts were calculated by multiplying together a class-level customer forecast and a class-level use per customer forecast. For each month in the forecast period, the lower bound of each class-level sales forecast was found by multiplying the lower bound of the class-level customer count forecast by the lower bound of the class-level use per customer forecast. The same procedure was followed to arrive at the upper bound of the class-level sales forecasts. The industrial sales forecast was generated by a classlevel total sales model. The lower and upper bounds of the 95% confidence interval were an output of the modeling process.

The lower bound forecasts of each class' 95% confidence interval were summed to arrive at the lower bound for the total sales forecast, while the upper bound forecasts of each class' 95% confidence interval were summed to arrive at the upper bound for the total sales forecast. The lower bound class-level sales forecasts were then applied to the appropriate load profile and, along with the lower bound non-coincident gross peak demand forecast, was run through MetrixLT to generate the lower bound of the hourly forecast. The same procedure was undertaken with the upper bound sales forecasts and non-coincident peak demand forecast to generate the upper bound of the hourly forecast.

The reference case temperature assumptions in the hourly load forecast model were not changed for the scenarios. The reference case weather-related assumptions in the sales, the use per customer and the non-coincident peak demand forecast models for MEC's Illinois service territory were not changed in the scenarios. The reference case forecasts for retail switching sales, customers and demand in MEC's Illinois service territory were not changed in the scenarios.